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Summary. The time dependent (i.e., nonstationary)
unidirectional fluxes through a multilayered system
consisting of sandwiched layers of arbitrary com-
position and exhibiting arbitrary potential and re-
sistance profiles have been calculated, assuming that
the flux is governed by the Smoluchowski equation
(ie., a flux resulting from a diffusion process super-
imposed upon a migration and/or a convection pro-
cess, where part of the latter may arise from an
active transport process). It is shown that during
the building up of the concentration profile of the
isotope inside the system towards the stationary val-
ue the ratio between the two oppositely directed,
time-dependent unidirectional fluxes is, from the
very first appearance of the isotope in the surround-
ing solutions, equal to the value of the stationary
flux ratio. The practical implications of this result
are discussed.
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If the passive movement of an ionic species through
a membrane results exclusively from a process of
electrodiffusion, ie. a diffusion process superim-
posed upon a migration process due to the presence
of an electric field in the membrane, the ratio be-
tween the two oppositely directed unidirectional flux-
es is given by the flux ratio equation, which states
that this ratio is solely determined by the elec-
trochemical potential difference across the mem-
brane for the ion in question. This equation was first
derived by Ussing (1949) and by Teorell (1949), the
derivation by the latter being restricted to the case
of a homogeneous membrane. The flux ratio equa-
tion has been widely used in biological studies since
it can disclose the presence of active transport, ex-

change diffusion, and other types of interactions
which may contribute to the transport of the isotope
used in the study of the membrane transport of the
ion in question. The interaction resulting from sol-
vent flux has been treated repeatedly (Koefoed-John-
sen & Ussing, 1953; Meares & Ussing, 19594, b;
Hoshiko & Lindley, 1964; Kedem & Essig, 1965).
Although the fundamental principles chosen by
these authors as the basis of their treatment differed,
the various derivations had one feature in common,
viz. the physical and theoretical situation was con-
sidered at times sufficiently large to allow for sta-
tionary (ie., time independent) conditions to prevail
in the membrane.

In a biological object of minute thickness like a
cell membrane, the time to establish a stationary
concentration profile for the ionic radio isotope trac-
er species in question is negligibly small for all
practical purposes, and the above restriction on the
applicability of the flux ratio equation is here of no
consequence. The same does not always apply, how-
ever, in the case where the experimental object is a
composite structure of a considerable thickness like
an epithelium. In such a system the flux of for
example, radio-sodium becomes constant within a
period of about 15min. In the case of potassium,
however, the pool is large and the transport rate is
low. In such a case it may take hours for the fluxes
to reach a steady-state condition. In fact, it may
take so long that the preparation has changed its
properties (potential, resistance, etc} in the mean-
time. The same complication may arise when the
preparation is subject to the action of hormones or
drugs. Such experimental conditions would favor a
determination of the flux ratio before the isotope
flux had become stationary, ie., at a time when the
experimental system was still being loaded with the
isotope. This procedure, however, could be open to
criticism since it implies the use of the flux ratio
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equation under circumstances which are outside its
original range of validity. This naturally poses the
problem of extending the range of validity of the flux
ratio equation into that time domain where non-
steady state conditions prevail.

It has been suggested by one of us (Ussing, 1978)
that the value of the flux ratio remains the same
whether stationary conditions prevail or not. The
mathematical approach employed, however, was in-
complete since, although it indicated that the hy-
pothesis was correct as soon as a quasi-stationary
state was established, it was not clear whether or not
the hypothesis was also correct in the very early
stages of equilibration. In this paper we shall at-
tempt to resolve this problem by calculating the
time-dependent unidirectional fluxes through a mul-
tilayered system consisting of sandwiched layers of
arbitrary composition and exhibiting arbitrary po-
tential and resistance profiles. It will be shown that
if the flux of the isotope is governed by the Smol-
uchowski equation (i.e., a flux resulting from a dif-
fusion process superimposed upon a migration pro-
cess and/or a convection process where part of the
latter may arise from an active transport process),
the ratio between the time-dependent unidirectional
isotopic fluxes is, from the very first appearance of
the isotopes in the surrounding solutions, equal to
the value of the stationary flux ratio. A preliminary
report of some of the results was made at a meeting
on Membrane Transport in Biology held at Sand-
bjerg Castle in May, 197\7.

Results

The transport process of the pertinent isotopic tracer
ion is considered to take place both as the result of
a concentration gradient in the region in question
and as the result of each particle being influenced by
an outer driving force, e.g., an electrical or pressure
gradient which imparts to each of the particles a
stationary velocity v which is superimposed upon
their Brownian movements. Furthermore, the trans-
port process is considered to take place through a
stratified barrier of total thickness s which is de-
lincated by planes perpendicular to the x-axis at
x=0,X1, X5, c00s Xj5 vns x,=h. The diffusion coefficient
D for the isotope in question and its velocity v
caused by the external field may vary from layer to
layer but are assumed to have constant values in
each layer. In the layer between x;_; and x; these
quantities are denoted DY and v', respectively. The
constancy of DY and v¥ inside each layer implies
that the external driving force, e.g. the potential
gradient or pressure gradient, respectively, remains
constant within each layer. If no other mechanisms

are present the isotope transport in each layer will
be governed by the time-dependent Smoluchowski
equation (Smoluchowski, 1915)

acy oo ’co o acy )
ot ox? ox

where CY(x,t) is the concentration of the isotope

inside the layer x;_1Sx=x; at the time ¢. The flux

JY(x,t) corresponding to the concentration profile
CY(x, t) in the layer is

oCY

JUW= _pW\»
dx

BRI\ (2)
because of the condition of mass conservation:
0CYI0t= —8JV/0x. For an elementary derivation of
Egs. (1) and (2), see, e.g., Sten-Knudsen (1978). For
the sake of convenience it is assumed that no iso-
tope is present in either the membrane system of in
the surrounding bathing solutions before zero time.
At the time t=0 two different concentrations or the
same isotope are established instantaneously in the
two solutions which surround the system. Con-
sequently, the concentration profile inside the mem-
brane system will grow steadily with time, approach-
ing a stationary profile. The determination of the
time-dependent concentration profile of the isotope
requires a solution of the n partial differential equa-
tions corresponding to Eq. (1) with the initial con-
dition

C(x,t)=0, for 0=x<h and t=0 (D

and the boundary conditions

C=C(0,t), for x=0 and ¢>0 (an
C=C(h,1), for x=x,=h and >0

together with the conditions

C(j)(xj, )= cu+ 1)(xj7 )

JU)(xj, t)::J(” 1)(Xj, t)

for j=1,2,...,n—1 and ¢>0 (11D

which expresses that the concentrations and fluxes
are continuous at the interfaces between the layers
inside the stratified system. The set of conditions (II)
and (III) provide a total of 2n equations which al-
lows a determination of the 2n constants which ap-
pear from the solution of the n Smoluchowski equa-
tions. Thus the problem can in principle be solved,
but the algebra becomes increasingly heavy as the
number of layers increases beyond n=2. Therefore,
we shall restrict ourselves to the solution of the
more tractable problem which suffices for our pur-
pose, viz. to find how the “input quantities” C(0,7)
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and J(0,¢) at the plane x=0 are interrelated to the
“output quantities” C(h,t) and J(h, 1) at the plane
x=h.

1. Concentrations und Fluxes

To solve the problem raised we begin by consider-
ing the jth layer with its interfaces situated at x;
and x;, when the concentration and flux have the
values CYU(x;_,,1) and JP(x;_,, 1), respectively, at x
=x;_, and time t. We seek a solution of the Smol-
uchowski equation Eq. (1) inside the region
X; =x=x;. Because of the conditions (I), (II), and

(HI) this solutlon must satisfy both the initial

CYx,0)=0; for x; ;<x<x; and =0 (A)

as well as the boundary conditions

C(j)(x7 t) — C(j)(xj_ 1 t);
for x=x;_, and >0 (B)

and

J(j)(x, [)ZJU)(XF 10,
for x=x; , and t>0. (@]

The solution of Eq. (1) in conjunction with the
boundary conditions (A), (B) and (C) is most easily
obtained by using the method of Laplace transforms.
The transform CY(x,s) of CY(x, t) is defined by

CYx,5)= [ C e”vdt (3)
(see, e.g., Sneddon, 1972). The transform of the flux
is obtained from Eq. (2) as

T9(x, s)= — DV dCY(x,s)
’ dx

+v9 CY(x, s). (4)
Equation (1) is multiplied by e~* and integrated
from O to oo with respect to ¢. This gives

oCWw

oo A
5 5e dtzDU)g—z{jO CV'e* dr}

_U(J) {foo C(J) —st d[}

after interchanging the order of integration and dif-
ferentiation on the right-hand side. The left-hand
side is integrated once by parts. This gives

sCY(x, 5)— CP(x,0)=5CP(x, 5)

because of the initial condition (A). Thus the La-

place transform of Eq. (1) satisfying the initial con-
dition is

dZC;J;(Zx, s) (UU)/D(]))dCd’ix s)
—(S/D(j)) . f(j)(x, 5)=0. (5)

The solution of this equation must satisfy the
boundary conditions below

CY(x, 5)= E(j)(xr -8 for x=x; (Bb)
and
JO(x, S):f(ﬁ(xj; 1»8);  for x=x;_, (Co)

which are the transforms of Egs. (B) and (C). To
facilitate printing, the transforms of concentration
and flux will from now on be written as CY(x) and
J9(x), excluding the transform parameter s. The
general solution of Eg. (5), which is most easily
applicable in the interval X;_=x=x; when both
x; ; and x; differ from zero and which already
satisfies the boundary condition Eq. (Bb), is of the
form

a(j)(x) = a(j)(xF 1) exp {“(j)(x —X;_ O
~cosh gV (x—x;_ )+ BV exp {aV(x—x;_ )}

-sinh g9 (x—x;_ ;). (6)
In this expression the parameter «“ is defined by
2oV = U(j)/D(j) (7)

whereas the transform parameter s now is contained
in

49 = {(a¥)? + s/DD}, (8)

(As to the supplementary algebraic steps, see Appen-
dix). B in Eq.(6) is a constant to be found by apply-
ing Eq. (4), which defines the transform of the flux,
to Eq. (6) and invoking the boundary condition Eq.
(Ce) for JU (see Appendix A). The transforms for the
concentration and flux in the region x; <x=x,
then take the form

COx)=exp (o (x—x;_ )} [cosh g (x—x;_,)

o . .
+Fsmh g0 —x;_ 1)] Cx;_,)
1

D‘”q sexp{ot(x —x;_,)} sinh g9 (x — =%, )TV, ) 9)
and

(@) —(g9)?

TN — U
T9x)=D 7

- eXp {“(j)(x“xj‘ 1)} sinh q(j)(x—xj_ ) E(j)(xj—- )
- 1)} [ sinh g9 (x —X;_1)

l)JjU)(xj— 1) (10)

1
q(’) -exp {a9(

—q¥ cosh g9 (x —x;_



236 0. Sten-Knudsen and H.H. Ussing: Flux Ratio in Nonstationary Conditions

The relations sought for between the “input values”
CY(x;_,) and J9(x;_,) to the layer at x=x;_, and
the “output values” CY(x;) and J9(x) from the
layer at x=x; are obtained by putting x=x; in Egs.
(9) and (10). This gives

—_— 1 + » (j) - —_—
CY(x)=exp {a? 49} [cosh By -I—%sinh ﬂ‘f’] CCYx;_y)

exp {o 49} sinh Y

Dpigh jU)(xF ) (11)

and

@Y —(g?

j(j)(x]_) =pv q(f) - exp {aU)A(j)} sinh ﬁ(j)' C’(i)(xj_ )

1 8 . . . N
-5 exp {oc“)Am} [“(1) sinh ﬁu) - q(J) cosh ﬂ(])] J(J)(Xj7 1) (12)
q
where

AV =x.—x, 13
Jj Jj-1

is the thickness of the layer x; ;<x=x; and the

transform parameter is now contained in
BO =g gV, (14)

It appears from Egs. (11) and (12) that both “out-
puts” C?(x;) and JY(x;) from the layer inside the
region x; | <X=X; are linear functions of the “in-
puts” CY(x;_

1) and JP(x;_,) to the same layer, viz.

CO(x)=AVTI(x; |)+BOTV(x;_,) (15)
and
j(j)(x):E(j) C(j)(xj_ 1)—+—F(j) jU)(xji ) (16)

where

. o I .
AV =exp {aP 49} [cosh B9 +—asinh ﬂ(”]
q

exp {oa 49} sinh g9
DD 17
qv

BY = —

exp {(x(j) A‘j)} sinh ﬁ(j)

FO = — " €Xp {aU)A(J)} [oc(” sinh ﬁ(’)—q(’) cosh ﬂm]_
q

It will be convenient to write Egs. (15) and (16) in
their matrix form as

C(j)(xj) A0 BW (j(j)(xj_ ) 8
JO(x) :[E(j) F(j)]' T, ) (18)
Thus, the layer in the region x;_,; Sx=Xx; can be
described by a characteristic square matrix

. A0 BW
) —
Qv= [E‘f) F(j)]v (19)

the transfer matrix, which connects the “input val-

s” CV(x;_,) and J9(x;_,) at x=x,_, to the “out-
put values® C(’)(x) and j(f)(x ,) from the layer at x
=x;. But accordlng to the fundamental continuity

condition (IIl), the “input values” CY(x;_,) and
JO(x;_,) to the layer x; ;| <x<x; at x=x;_; are
also  the “output values” - D(x; 1) and
JY=D(x;_,) from the adjacent layer x; _zgxngfl
at x= X 1s ie.,

{é(j)(xj_ 1)}_{60— 1)(xj_ 1)}

J(])(xj*ﬂ J(j‘l)(xjﬁﬂ ‘
Thus, Eq. (18) can also be written as

C9(x. (U,

_(.)( J) :QU)_ i (xj—l) ) (20)
JY (xj) JY )(xj— 1)

If the argument leading to Eq. (18) had been

applied to the region x; ,<x=x;_;, the following
system of equations would have been obtained

g({'-n(xj_l) _Qu-1. g_g—1)(xj,z) .
J(J—l)(xjﬁl) J(J*l)(xj7 2)
Inserting this into Eq. (20) above gives

C(])( ) ; i C(jfl)( j,z)
{JU)(X)} QY. QU-1y. {J‘j‘l)(ijﬁz)} @2n

Thus, the “input values” CY~V(x;, ,) and
JU=P(x;_,) at x=x; , are now connected to the
output “values” CU)( x;) and J9(x;) at x=x; by a
transfer matrix which is the product of the two
transfer matrices which are associated to the layers
between x; , and x; , and between x; ; and x;
respectlvely By extendmg this argument through the
whole stratified system, ie., across the region
0=x=<x,=h, it follows that the “output values”
C(h) and J(h) to the one bathing solution at x=h
corresponding to the “input values” C(0) and J(0)
from the other solution at x=0 are described by the
expression

Ch C(O0
{J((h))} —(Q™.Qu=1)..... gM). {5((0))} (22)

The product of two square matrices of the second
order is again a square matrix of the second order.
Consequently,

n -1y _[A®) B(s)
Q. Qo1 Q(U_[E(s) F(s)] (23)
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where each of the elements A(s), B(s), E(s) and F(s)
are complicated functions of the transform parame-
ter s. Equation (22) can therefore be written in the
more compact form

C(h)) _[A() B(s) [{C()
{7 (h)} - [E(s> F(s)] {-7 (0>} .
which is equivalent to the following system of equa-
tions
C(h)=A(s) C(O)+B(S)J(O)} 25)
J(h) =E(s) C(0)+F(s)J (0)

which shows that the Laplace transforms of the
“output values” C(h) and J(h) from the stratified
object at x=~h both are linear functions of the “in-
put values” C(0) and J(0) to the experimental sys-
tem at x=0. However, it would be equally natural
to regard the values C(h) and J(h) as the input to
the system and those of C(0) and J(0) as output.
This relation can be obtained from Eq. (25) accord-
ing to the rules of matrix algebra (see, e.g., Head-
ing, 1958) as

coy_ 1 F(s) —B(s)] (C(h)
{7(0)}_detQ [—E(s) A(S)] '{7(11)} (26)
where the quantity det Q=A(s)F(s)—B(s) E(s) is the
determinant of the matrix

Q:Q(”).Q("*l) ..... Q(l)

corresponding to Eq. (23). Since the determinant of
the product of two square matrices equals the pro-
duct of the determinants of the two mairices (see,
e.g., Heading, 1958) it follows that

detQ=detQ"-detQ"~1...detQV.-- det Q™. (27)
It is shown in appendix B that

det Q¥ =exp {20V A} (28)

where o and A9 are defined by Egs. (7) and (13),
respectively. In view of the complicated elements
AV, BY EY and FY which constitute the matrix of
QY [cf. Eq. (17)], the appearance of this simple
result is in itself surprising. But the more important
property of Eq. (28) is that none of the determinants
of the transfer matrices QY contain the Laplace
transform parameter s. Insertion of Eq. (28) into Eq.
(27) gives

detQ =exp {2 Y o AP},

Accordingly, Eq. (26) can be written as

C(0) ) G F(s) —B(s)] (C(h)
{j(O)}ZeXP{_ZZ“U)A( N, [—E(s) A(s)] '{j(h)}
which again is equivalent to the system of equations

exp {23 a? A9} C(0)=F(s) C(h)—B(s)J (h) 29)
exp {25 aDADY J(0)=—E(s) C(h)+ A(s) J ().

In addition to demonstrating the linear dependence
between the input and output concentrations and
fluxes, this system of equations taken together with
the system of Eq. (25) provides a convenient means
of calculating the time-dependent unidirectional flux-
es through the stratified object.

2. Unidirectional Fluxes

The unidirectional flux was defined by Ussing (1948,
1978) as the flux of the substance in question when
its concentration is alyways maintained at zero in
one of the phases surrounding the membrane. In
general, we have the option of measuring either the
value of the input flux of the isotope to the experi-
mental object or the output flux from it. When the
flux is stationary and the substance is conserved
during its transport across the membrane the input
flux equals the output flux. In the nonsteady state,
however, where the concentration profile is being
built up towards the stationary value the input flux
will exceed the output flux. Furthermore, if the val-
ues of the ftransport parameters vary across an
asymmetric stratified object, the input fluxes at ei-
ther membrane surface may have a different time
dependence according to which of the two sides of
the object is being loaded with the isotope during
the unidirectional transport. In flux ratio consid-
erations we are only interested in keeping an account
of those particles which in one way or the other
have permeated the whole system in question. Ac-
cordingly, as time-dependent unidirectional fluxes we
shall consider the flux of the radioactive tracer ions
at the plane where the tracer ions leave the biologi-
cal object and enter the surrounding medium having
virtually zero concentration for the tracer ion in
question.

We begin by considering the unidirectional flux
in the direction (0) —(h), ie., the flux J(h) at the
position x=h, when C(h)=0. Using the upper equa-
tion of Eq. (29) and putting C(h)=0 gives

C(0)
B(s)

If the concentration C(0) is kept constant we have

J(h)y=—exp {25 a 49
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C(0)=C(0)/s since the Laplace transform of unity
equals 1/s, and the above expression can be written

J(hy=—exp{2} a(J)A“’}

- C(0). 30
(S) (30)
But C(0) is a constant and Y 0¥ 4% does not con-
tain the Laplace transform parameter s. Thus, the
time-dependent part G(t) of the unidirectional flux
J(h,t) is contained in the complex inversion integral

y+ioo

1 exp {tz}
2mi , % 2B(2)

G(t)=

which in general can be transformed into a closed
contour integral - the Bromwich integral - and
evaluated making use of the calculus of residues (see,
e.g, Sneddon, 1972). The time-dependent unidirec-
tional flux J(f) in the direction (0)—(h) at the
position x=h can thus be written

JO ()= — C(0)exp {2} a4} G(1). (31)

JOB is directed along the positive direction of the x-
axis and is therefore always positive. This implies
that G(f) must be a negative quantity, ie, —G()
=1G(1)].

Next we consider the unidirectional flux in the
opposite direction, (k) —(0), ie., the flux J(0) at the
position x=0 when C(0)=0. Invoking this condition
in the upper equation of Eq. (25) gives

_Cm)_Ch
TO=56 5By

(32)

if the concentration at x=»h has the constant value
C(h). Comparison between Egs. (32) and (39) shows
that, apart from the appearance of different con-
tants, the two transforms are identical. Hence the
inversion of Eq. (32) can be written as

J(0,8)=C(h) G(t)

from which it follows that the time-dependent uni-
directional flux in the direction (k) — (0) is

JO()=C(h)|G ()| (33)

bearing in mind that G(¢) is negative and that uni-
directional fluxes always are considered as positive
quantities. Division of Eq. (33) into Eq. (31) gives

JPH_CO

J“’O)(t) C(]’l {22 o) A(J)} (34)

since G(t)= —|G(t). Substituting Eq. (7) into the
above expression, we obtain the following expression
for the time dependent flux ratio equation

JOD@y  C(0 o
J(hO)EIZZ—CE—h;eXp {Z D9 Am}' (33)
The right-hand side does not contain the time t. Thus
the ratio between the two time-dependent unidirec-
tional fluxes (ie., output fluxes) is time invariant
even in a stratified medium where the transport
parameter v and DY may vary from one layer to
the next.

The input component of the unidirectional fluxes
are J(0) for C(h)=0 and J(h) for C(0)=0. Applying
these boundary conditions to Egs. (25) and (29) gives

J(O) _ A(s) CO)
(

J(hy~  F(s)Ch)

which shows that the ratio between the time-de-
pendent input fluxes is not time invariant unless A(s)
=F(s), which in general is not the case.

3. Flux Ratio for Electrodiffusion and Convection

The exponential term in Eq. (35) bears little re-
semblance to those usually appearing in flux ratio
equations. It will now be shown that Eq. (35) is
identical with the expressions obtained by Ussing
(1949, 1978), assuming stationary conditions.

In general the migration velocity ¥ is given by

W =pBh xW" (36)

where BY is the mechanical mobility of the single
isotope molecule in question in the region
x;_;<x=x; and XV is the driving force acting on
each particle. XY may vary from one layer to the
next but is assumed to have a constant value inside
each layer x;,  <x=<x, The mobility BY and the
diffusion coefﬁcxent D(’) in each layer are interconnec-
ted by Einstein’s relation

DY =kTBY (37)

where k is Boltzmann’s constant and T is the ab-
solute temperature. Thus the exponent in Eq. (35)
can be written as

o BOYW
G = 0= M AL
ZD(j) =Y PP 47 ;CTZXJAJ

But the sum of products XVAV=XY(x;—x; ;) re-
presents the work, W which the driving force
does on each isotope molecule in moving it through
the stratified medium from the position x=0 to x
=h. Hence Eq. (35) can be written as

JO(@ ()

J("O)(t) = C(h) Xp {W(Oh)/kT} (38)
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which from the physical point of view perhaps is
more easily understood than Eq. (35).

If the isotope is an ion with charge number z
and the electrical potential is ¥(0) at x=0 and y (h)
at x=h, the work done against the electric field
when moving the ion in question from x=0 to x=h
is

24, [§ (h) = (0)]

where g, is the elementary electronic charge. Since
the particle is assumed to move with constant ve-
locity, this work is numerically equal to and of
opposite sign to the work, W done by the electric
field on the ion. That is to say W% = —zq [y(h)
—(0)]. Inserting this into Eq. (38) gives

T _C(0)

= 0)—y(m1/kT 39
J(”O)(t) C(h) CXp {ZQe [lp( ) W( )]/ } ( )
or, since Faraday’s number F=N,g, and the gas
constant R= Nk, where N, is Avogadro’s number,

T () _C(0)

jmwg=2@5ﬁvaDM®—wwHRT} ' (40)

The right-hand side is identical to that obtained in
the original treatment by Ussing (1949) where the
system was considered to be in the stationary state
only.

The velocity »¥ in Eq. (35) could also result from
a convection process where the solvent and the dis-
solved particles move with the same speed through
the stratified medium of thickness h. Alternatively,
the velocity v¥) could be ascribed to an active trans-
port being present in the jth layer. If both the con-
vection velocity and the diffusion coefficient for the
isotope in question assume the constant values v
and D everywhere in the region 0<x<xh, Eq. (35)
takes the particular simple form
JO(E)  C(o
me8=z%%WPMWD} (41)
The right-hand side is identical to the expression
obtained by Sten-Knudsen (1978), assuming that sta-
tionary conditions hold.

If the convection velocity is constant but the
diffusion coefficients DY vary from layer to layer, we
have

S _CO) f o 0
70~ ¢l PP ()

where (P) is the average permeability defined by
1Py =3 1/PV =3 1/DV/4Y)
(cf., e.g., Sten-Knudsen, 1978).

If v varies from layer to layer the condition of
mass conservation must still prevail. This can be
written as

SO — ¢

where @ is the volume flow through the system, and
SY the area available for flow in the jth layer. If the
diffusion coefficients DY all have the same value, D,
Eq. (35) assumes the form

JOP() CO) (b a9
———J(ho)(t)—%ex DL ("

If the process of summation passes into one of in-
tegration we have

JOPw _ C(0) {¢§Ei}
) 5(x)

JOm - )

P> (43)
where the right-hand side is the expression obtained
by Ussing (1952, 1978) and Koefoed-Johnsen and
Ussing (1953), assuming stationary conditions to
hold.

Discussion

1. The Time Invariance of the Flux Ratio

The main result of the preceding analysis is the
demonstration of the time invariance of the flux
ratio equation. This result holds irrespective of
whether the transport process considered takes place
through a single barrier of homogeneous compo-
sition or through a multilayered barrier consisting of
sandwiched layers of homogeneous barriers in which
the transport parameters for the particles in question
vary from one layer to the next. This implies that
the order in which the individual barriers are con-
nected in cascade is immaterial for the time de-
pendence of the flux of those particles which have
passed the whole system. The transport processes
considered were those which could be described
within the framework of the Smoluchowski equa-
tion.

e o*Cc  oC

o ox? ox

which describes the motion of a collection of par-
ticles whose random movements are being dislo-
cated unidirectionally by some mechanism which
imparts to each particle a constant drift velocity .
Since the values of both the diffusion coefficient D
and the drift velocity v inside each layer are as-
sumed to be constant, the Smoluchowski equation is
a linear partial differential equation of the second
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order. It is this property of linearity and not the
particular from of the Smoluchowski equation which
results in the linear interrelationship between the
“input values” of concentration, C¥(x;_,), and flux,
JP(x;_,), and the “output values” CY(x) and
J9(x)), viz.
(;m(xj) 3 AU)(S) BU)(S) é(j)(xjkl)
j(j)(xj)}'_ [E(j)(s) F(j)(s)] j(j)(xj_l)}'

This result is analogous to that which is obtained in
an electrical four-terminal network where the poten-
tial and current at the input side are linear functions
of the potential and currents at the output side. In
the four-terminal network the value of the deter-
minant of the transfer matrix is unity. This can be
shown to be a consequence of the reciprocity relation
which holds for any linear electrical network and
which follows from the more general reciprocal
theorem for conductors (Green, 1828). A reciprocity
relation similar to that of the four-terminal network
will hold in a homogeneous slab for any transport
process provided only linear operators in space and
time are involved. As a result, the determinant of
the transfer matrix in the above equation will always
turn out to be a pure number, not containing the
transform parameter s, although its value in general
will differ from unity (¢f. Eq. (27), except when the
transport of the particles results solely from a dif-
fusion process. In the case of a cascade connection
of several homogeneous slabs, the over-all transfer
matrix of the whole system is the matrix product of
the matrices of the individual slabs taken in the
order of connection. Since the determinant of the
product of any number of square matrices is equal
to the product of the determinants of those matrices,
it follows that the determinant of the over-all matrix
also is a pure number. This property, which also is a
consequence of linearity prevailing throughout the sys-
tem, results in two unidirectional fluxes, both having
the same time dependence although they may not
approach the same final stationary value.

It was essential for our demonstration of the
time invariance of the flux ratio equation that the
following parameters were constant during the time
considered: (i) The concentrations C(0) and C(h) of
the substance in question in the two surrounding
solutions, and (ii) the diffusion constant D and the
drift velocity v for the particles in each of the cas-
caded layers. The first condition can be readily as-
sumed but the second cannot. For example, a de-
terioration of the preparation would gradually cause
a change in the resistance and potential profiles
through the preparation and thus in the value of the
flux ratio. But even with a stable nondeteriorating

preparation the values of D and v may change dur-
ing the experiment because they both may depend
upon the concentration profile. In that case the con-
dition for establishing the flux ratio equation would
require that both the concentration profile for all
the permeating substances and the potential profile
remained stationary throughout the preparation dur-
ing the entire duration of the experiment. In general,
this requirement can only be fulfilled by measuring
isotope fluxes alone provided the isotope is used in
such a small concentration that the progress of the
tracer concentration profile through the preparation
towards its stationary state does not perturb the
existing stationary concentration profile for the cor-
responding nonradioactive substance.

The procedure of considering a large number of
slabs of variable thickness A% arranged in cascade
led to an alternative formula for the flux ratio equa-
tion, where the weight factor to the concentration
ratio C(0)/C(h), which at the first glance might ap-
pear somewhat strange, is an exponential of the
following form

exp {Z v AV},

Nevertheless, this form of the exponential seems to
be the more general. This is so because a great
number of transport processes in biology can be
described within the framework of the Smol-
uchowski equation by assigning a partial drift ve-
locity, v,, which is characteristic for each particular
process. Thus, if the drift velocity is caused by an
electric field acting on ionic tracers, the above ex-
pression was easily transformed into Eq. (40) which
is the well known expression of Ussing (1949), which
allows for a precise numerical evaluation of the flux
ratio under a process of pure electrodiffusion. Simi-
larly, if a convective flow causes a solvent drag on
the particles, Eq. (35) will lead to the various ex-
pressions for the flux ratio which depending upon the
geometry of the flow, have been derived assuming
steady-state conditions to hold (Ussing, 1952; Koefoed-
Johnsen & Ussing, 1953; Meares & Ussing, 19594, b;
Hoshiko & Lindley, 1964; Kedem & Essig, 1965;
Ussing, 1978). Analogously, if the particles are sub-
ject to exchange diffusion, to co-transport with an-
other molecular species, or even to an active transport,
a component to the drift velocity can be assigned to
each type of transport. Thus, the exponential in the
flux ratio equation appropriate to these processes
will again be given by Eq. (35), although it may be
impossible in these cases to evaluate with precision
the numerical value of the exponential. Nevertheless,
even in these cases the two oppositely directed uni-
directional tracer fluxes have the same time de-
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pendence, ic., the steady-state value of the flux ratio
can be estimated from the nonsteady-state value.

2. Experimental Application of the Principle
of Constant Flux Ratio

From the foregoing it is clear that deviations from
the rule of time-invariant flux ratio can occur only if
one or more of our original assumptions are not
fulfilled. We shall briefly discuss two such cases
which are directly applicable to biological studies.

In the first place, the substance in question may
pass the experimental object by more than one path-
way. Granted that the pathways are characterized by
different flux ratios as well as different mean passage
times, the flux ratio observed for the whole object
may change with time. To illustrate this point, let us
assume that sodium can pass an epithelium by a
slow cellular route where it undergoes active trans-
port and a fast intercellular shunt path where the
transport is strictly passive. Under these conditions
it may well be that immediately after addition of the
tracers to the bathing solution the flux ratio will be
close to that of passive transport, whereas that of
active transport will dominate later on. In fact, a
recent study has shown this to be the case. Under
the assumption that there are only two significant
pathways with different flux ratios and different
mean passage times, it is possible to resolve the
experimental data into two sets of fluxes, each be-
longing to one of the two pathways (Ussing, Eskesen
& Lim, 1981).

The second application of the principle of con-
stant flux ratios is concerned with obtaining reliable
flux ratios in experiments where the steady flux ratio
cannot be obtained either because of a limited via-
bility for the biological specimen or because the
experimental conditions themselves lead to changes
in the flux ratio before the stationary state has been
reached. If only one pathway is involved one can
usually obtain the correct flux ratio by extrapolating
the sequentially measured flux ratios back to zero
time. The rationale for this procedure is that a cor-
rect measurement of the flux ratio only requires that
the properties of the specimen have not changed
measurably within the period required for the tracer
experiment. Now, the time it takes for the first ap-
pearance of the tracer passing the specimen can be
reduced almost at will by an increase in the specific
activity. Thus, formally at least, one can reduce the
duration of the experiment until the specimen has
not changed measurably during the passage of the
tracer. The extrapolated zero-time flux ratio is thus
the best possible estimate of the steady-state value.
For multiple pathways each one must be considered

separately, but for more than two pathways the
method is hardly warranted.

Finally, a word about experimental procedure:
Ideally one should use two tracers for the same
substance added simultaneously on the two sides.
Alternatively, one can measure two fluxes sequen-
tially on the same specimen or in parallel on two
specimens. In the latter case it is mandatory that all
measurable physical properties should be as similar as
possible during the corresponding measurement of
forward and backward flux.

The authors are very grateful to Dr. Leon Pape for critical
examination of the text and helpful suggestions. We also wish to
acknowledge our indebtedness to Mrs. Julia Ann Halkier for
devoting her skill and patience to the preparation of a difficult
manuscript.

Appendix A

The Evaluation of the Transforms C(x,s) and J(x,s)
Suitable for the Interval x;_;Sx=<x,,

when Both Transforms Must Conform

to Boundary Conditions for x=x;_,

We begin by adjusting the parameter ¢ in the function

C=e¥

so that the function satisfies the Laplace transform of the Smol-
uchowski equation

q —(S/PM C=0 (A1)

dx

where 2¢0=0%/DV. Inserting C=exp {¢x} into the above equa-
tion gives the following quadratic in ¢

E2 200 ¢ —5/DV =0

the roots of which are

51 B PN {(10))2 + s/DU)}A =g +q(i)
52 o {(&U)y +S/DU)}%: a(j)_q(i)'

A solution of Eq. (A1) will therefore be of the form
Clx,s)=Aexp {aVx} exp {g¥x} + B exp {o¥x} exp { — g x}

where A and B are arbitrary constants. By putting 4/2=B/2 and
4/2= —B/2, respectively, we obtain

C=Aexp{eVx} cosh gPx + B exp {x sinh g¥x (A2)

which is another general form of the solution. Since sinh0

=0 and cosh0=1 and,_ furthermore, C in the above equation

must assume the value C(x;_;) for x=x,_,, an appropriate form

of Eq. (A2) to serve this end is

C(x)= C(xj_ Jexp {a¥(x —x;_,)} cosh g (x —x;_q)
+BYexp (a9 (x—x;_ )} sinhg?(x —x,_,) (A3)

which is Eq. (6) in the text.
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Next, the constant BY is determined by using the second
boundary condition to be satisfied, viz. that J must assume the
value J(x; ;) for x=x; ;. We invoke the transform for the flux

J= _D(j)d_c+v(i)6
dx

and insert Eq. (A3). This gives the expression
J(xy=D%exp {aP(x—x,_ )}

<[ cosh g (x —x;_ ) +¢' sinh ¢P(x —x;_ )] C(x;_,)

+DYexp {a¥(x —x;_,)}

[ sinh g (x —X;_ - q" coshg" (x —X;. 1 BY

(A4)
from which the constant B is determined by invoking the con-
dition J=J(x;_;) for x=x,_;. The result is
)

. = 1 T
B‘“=q(j) Clx;_ 1)—D(Tqu-)](xu— )

and inserting this value into Egs. (A3) and (A4) gives, respec-
tively, Egs. (9) and (10} in the text.

Appendix B

Evaluation of the Determinant
of the Transfer Matrix Q

We have from Eq. (19)

det QU>=AU)FU'>—BU>EU’,

In this expression we insert the values given by Eq. (17), dropping
the superseripts in o, A9, g9, B9, thus

det QU= [cosh g+%sinh ﬁ] (=1) ¢ F sinh f— cosh ﬁ]
q g

—D[«?/qg—q]e* -sinh B-(—1)e™-sinh f/Dq
= —e2*4(a/q)? sinh? f +€** cosh? §
+e2%4(w/q)? sinh? f—e**4sinh? §
=24 (cosh? f—sinh? B)=exp {29 AV}
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