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Summary. The time dependent (i.e., nonstationary) 
unidirectional fluxes through a multilayered system 
consisting of sandwiched layers of arbitrary com- 
position and exhibiting arbitrary potential and re- 
sistance profiles have been calculated, assuming that 
the flux is governed by the Smoluchowski equation 
(i.e., a flux resulting from a diffusion process super- 
imposed upon a migration and/or a convection pro- 
cess, where part of the latter may arise from an 
active transport process). It is shown that during 
the building up of the concentration profile of the 
isotope inside the system towards the stationary val- 
ue the ratio between the two oppositely directed, 
time-dependent unidirectional fluxes is, from the 
very first appearance of the isotope in the surround- 
ing solutions, equal to the value of the stationary 
flux ratio. The practical implications of this result 
are discussed. 
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If the passive movement of an ionic species through 
a membrane results exclusively from a process of 
electrodiffusion, i.e., a diffusion process superim- 
posed upon a migration process due to the presence 
of an electric field in the membrane, the ratio be- 
tween the two oppositely directed unidirectional flux- 
es is given by the flux ratio equation, which states 
that this ratio is solely determined by the elec- 
trochemical potential difference across the mem- 
brane for the ion in question. This equation was first 
derived by Ussing (1949) and by Teorell (1949), the 
derivation by the latter being restricted to the case 
of a homogeneous membrane. The flux ratio equa- 
tion has been widely used in biological studies since 
it can disclose the presence of active transport, ex- 

change diffusion, and other types of interactions 
which may contribute to the transport of the isotope 
used in the study of the membrane transport of the 
ion in question. The interaction resulting from sol- 
vent flux has been treated repeatedly (Koefoed-John- 
sen & Ussing, 1953; Meares & Ussing, 1959a, b; 
Hoshiko & Lindley, 1964; Kedem & Essig, 1965). 
Although the fundamental principles chosen by 
these authors as the basis of their treatment differed, 
the various derivations had one feature in common, 
viz. the physical and theoretical situation was con- 
sidered at times sufficiently large to allow for sta- 
tionary (i.e., time independent) conditions to prevail 
in the membrane. 

In a biological object of minute thickness like a 
cell membrane, the time to establish a stationary 
concentration profile for the ionic radio isotope trac- 
er species in question is negligibly small for all 
practical purposes, and the above restriction on the 
applicability of the flux ratio equation is here of no 
consequence. The same does not always apply, how- 
ever, in the case where the experimental object is a 
composite structure of a considerable thickness like 
an epithelium. In such a system the flux of, for 
example, radio-sodium becomes constant within a 
period of about 15min. In the case of potassium, 
however, the pool is large and the transport rate is 
low. In such a case it may take hours for the fluxes 
to reach a steady-state condition. In fact, it may 
take so long that the preparation has changed its 
properties (potential, resistance, etc.) in the mean- 
time. The same complication may arise when the 
preparation is subject to the action of hormones or 
drugs. Such experimental conditions would favor a 
determination of the flux ratio before the isotope 
flux had become stationary, i.e.; at a time when the 
experimental system was still being loaded with the 
isotope. This procedure, however, could be open to 
criticism since it implies the use of the flux ratio 
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equation under circumstances which are outside its 
original range of validity. This naturally poses the 
problem of extending the range of validity of the flux 
ratio equation into that time domain where non- 
steady state conditions prevail. 

It has been suggested by one of us (Ussing, 1978) 
that the value of the flux ratio remains the same 
whether stationary conditions prevail or not. The 
mathematical approach employed, however, was in- 
complete since, although it indicated that the hy- 
pothesis was correct as soon as a quasi-stationary 
state was established, it was not clear whether or not 
the hypothesis was also correct in the very early 
stages of equilibration. In this paper we shall at- 
tempt to resolve this problem by calculating the 
time-dependent unidirectional fluxes through a mul- 
tilayered system consisting of sandwiched layers of 
arbitrary composition and exhibiting arbitrary po- 
tential and resistance profiles. It will be shown that 
if the flux of the isotope is governed by the Smol- 
uchowski equation (i.e., a flux resulting from a dif- 
fusion process superimposed upon a migration pro- 
cess and/or a convection process where part of the 
latter may arise from an active transport process), 
the ratio between the time-dependent unidirectional 
isotopic fluxes is, from the very first appearance of 
the isotopes in the surrounding solutions, equal to 
the value of the stationary flux ratio. A preliminary 
report of some of the results was made at a meeting 
on Membrane Transport in Biology held at Sand- 
bjerg Castle in May, 1977. 

R e s u l t s  

The transport process of the pertinent isotopic tracer 
ion is considered to take place both as the result of 
a concentration gradient in the region in question 
and as the result of each particle being influenced by 
an outer driving force, e.g., an electrical or pressure 
gradient which imparts to each of the particles a 
stationary velocity v which is superimposed upon 
their Brownian movements. Furthermore, the trans- 
port process is considered to take place through a 
stratified barrier of total thickness h which is de- 
lineated by planes perpendicular to the x-axis at 
X ~---0, X l ,  X2, . . . ,  X j  . . . .  , x,  = h. The diffusion coefficient 
D for the isotope in question and its velocity v 
caused by the external field may vary from layer to 
layer but are assumed to have constant values in 
each layer. In the layer between x~_~ and xj these 
quantities are denoted D (~) and v (j~, respectively. The 
constancy of D (~) and v (j) inside each layer implies 
that the external driving force, e.g., the potential 
gradient or pressure gradient, respectively, remains 
constant within each layer. If no other mechanisms 

are present the isotope transport in each layer will 
be governed by the time-dependent Smoluchowski 
equation (Smoluchowski, 1915) 

?~C (j) _D(j ) 02C (i) 3C(J) 
- - -  v (j) ( 1 )  

~t (~X 2 (~X 

where C(J)(x,t) is the concentration of the isotope 
inside the layer x j_ a < x < x j  at the time t. The flux 
Y(J)(x,t) corresponding to the concentration profile 
C(J)(x, t) in the layer is 

(J) 
y(j) = _ D(j) 0 C ~J~ + v(j) C(j) 

c~x 
(2) 

because of the condition of mass conservation: 
~ C ~ ) / & = -  OJU)/Ox. For an elementary derivation of 
Eqs. (1) and (2), see, e.g., Sten-Knudsen (1978). For 
the sake of convenience it is assumed that no iso- 
tope is present in either the membrane system of in 
the surrounding bathing solutions before zero time. 
At the time t = 0  two different concentrations or the 
same isotope are established instantaneously in the 
two solutions which surround the system. Con- 
sequently, the concentration profile inside the mem- 
brane system will grow steadily with time, approach- 
ing a stationary profile. The determination of the 
time-dependent concentration profile of the isotope 
requires a solution of the n partial differential equa- 
tions corresponding to Eq. (1) with the initial con- 
dition 

C(x, 0=0 ,  for 0 < x < h  and t = 0  (I) 

and the boundary conditions 

C=C(O,t ) ,  for x = 0  and t > 0  "[ 

C=C(h , t ) ,  for x = G = h  and t > 0  
(II) 

together with the conditions 

C(~)(x i, t) = c ~+ 1)(x j, t) 
Jo)(xj,  t)--J(J+ "(x~, t) 
for j = l , 2  . . . . .  n - 1  and t > 0  (III) 

which expresses that the concentrations and fluxes 
are continuous at the interfaces between the layers 
inside the stratified system. The set of conditions (II) 
and (III) provide a total of 2n equations which al- 
lows a determination of the 2n constants which ap- 
pear from the solution of the n Smoluchowski equa- 
tions. Thus the problem can in principle be solved, 
but the algebra becomes increasingly heavy as the 
number of layers increases beyond n=2.  Therefore, 
we shall restrict ourselves to the solution of the 
more tractable problem which suffices for our pur- 
pose, viz. to find how the "input quantities" C(0, t) 
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and J(0, t) at the plane x = 0  are interrelated to the 
"output quantities" C(h, t) and J(h, t) at the plane 
x = h .  

1. C(mcemratiot~s aml Fluxes 

To solve the problem raised we begin by consider- 
ing the j th layer with its interfaces situated at x j_ 
and x~, when the concentration and flux have the 
values C(at(x~_ 1, t) and J(J)(xj_ 1, t), respectively, at x 
=x~ 1 and time t. We seek a solution of the Smol- 
uchowski equation Eq. (1) inside the region 
xj_ ~ < x < x j .  Because of the conditions (I), (II), and 
(III), this solution must satisfy both the initial 

C(J)(x,O)=O; for x~ l < x < x ~  and t=O (A) 

as well as the boundary conditions 

C(~)(x, t) = C(~)(x~_ ~, t); 
for x = x j _ t  and t > 0  (B) 

and 

J(J)(x,  ~ )= J(J ) (x j_  1 '  t), 

for x = x j _ l  and t>O. (C) 

The solution of Eq. (1) in conjunction with the 
boundary conditions (A), (B) and (C) is most easily 
obtained by using the method of Laplace transforms. 
The transform C(J)(x, s) of C(~)(x, t) is defined by 

C~ s)= ~ C(Jl(x, t) e - ~' dt (3) 

(see, e.g., Sneddon, 1972). The transform of the flux 
is obtained from Eq. (2) as 

](~)(x, s)= - D  (~) d C(~(x, s) ~- v(j) ~O)(x, s). 
dx 

(4) 

Equation (1) is multiplied by e -~ and integrated 
from 0 to ~ with respect to t. This gives 

('~ c(Jl d2 { ov 

d 
- -  v(J) dxx { ~  C ( j )  e -  ~' dr} 

after interchanging the order of integration and dif- 
ferentiation on the right-hand side. The left-hand 
side is integrated once by parts. This gives 

s U~)(x, s ) -  C(~)(x, O)= s U ~)(x, s) 

because of the initial condition (A). Thus the La- 
place transform of Eq. (1) satisfying the initial con- 
dition is 

d~C(J)(x,s) (vO)/DO~) dC(J~(x,s) 
dx 2 dx 

- (s/D~ �9 COl(x, s) = O. (5) 

The solution of this equation must satisfy the 
boundary conditions below 

CU)(x, s)= C(~)(x~_ 1, s); for x =x~_ 1 (Bb) 

and 

J(J)(x, s)= fJ)(xj_ 1, s); for x =xj_  ~ (Cc) 

which are the transforms of Eqs. (B) and (C). To 
facilitate printing, the transforms of concentration 
and flux will from now on be written as C(J)(x) and 
J(J)(x), excluding the transform parameter s. The 
general solution of Eq. (5), which is most easily 
applicable in the interval x~ l < x < x j  when both 
x j_ 1 and xj differ from zero and which already 
satisfies the boundary condition Eq. (Bb), is of the 
form 

C(J)(x) = C(J)(xj ~) exp {~(J)(x-x~_ 1)} 
�9 cosh qO)(x- x2 1) -[- B(j) exp {~O/(x--x2_ 1)} 

�9 sinh q(~)(x - x 2 _  1). (6) 

In this expression the parameter 7o) is defined by 

2 c# ) = v(J)/D (j) (7) 

whereas the transform parameter s now is contained 
in 

q(J) = {(~0))2 + s/DO)}~. (8) 

(As to the supplementary algebraic steps, see Appen- 
dix). B in Eq. (6) is a constant to be found by apply- 
ing Eq. (4), which defines the transform of the flux, 
to Eq. (6) and invoking the boundary condition Eq. 
(Cc) for J(2) (see Appendix A). The transforms for the 
concentration and flux in the region x j_ 1<x<__xj 
then take the form 

C(J)(x) = exp {~3i)(x - x~ 1)} [cosh q(~>(x - x~_ 1) 

+ ~d~ sinh q~l(x - x2_  1)] C(J)(x2_ 1) 

1 
O(Jl q(dl exp { c~ t21(x - xj 1)} sinh qCi)(x - xj_ 1)" J~ 1) 

and 

(9) 

_ ( ~ ( j ) ~  2 _ _  [ ~ ( j ) ~ 2  

j(JI(x)=DUI} ~ J t~ ) 
q0) 

�9 exp {~~  x j_ 1)} sinh q(J)(x- x j_ 1)" CIJ~(xj_ ~) 
1 

q(j) exp {c~~ 1)} [~(J) sinh q( i ) (x-x j_  ~) 

_qO) cosh q(J)(x- xj 1)1 Y(il(xj_ 1). (1o) 
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The relations sought for between the "input values" 
C(~)(x~ ~) and f~)(xs ~) to the layer at x = x s _ l  and 
the "output values" C~ JU)(x)  from the 
layer at x =xs are obtained by putting x =xs in Eqs. 
(9) and (10). This gives 

F ~U) q 
CC/)(x) = exp {c# )A u)} [cosh flu) + q~5 sinh fiu)]. ~(/)(x~ ,) 

exp {c#)d u)} sinh fie) 
D(J) qU ) J~ ,) (11) 

and 

f~)(x) = D u) (au))z _ (q(j))2 qO) . exp {~(J)A (/)} sinh fi(i). C~ s_ 1) 

1 q(j) exp { ~(S) A U)} [ ~(;) sinh fiU)-q(S) c~ flU)] J(3) (x ~ ~ ) (12) 

where 

A ( J ) = X s - - X  j 1 (13) 

is the thickness of the layer xs ~ < x < x s  and the 
transform parameter is now contained in 

tics) = qU) A u). (14) 

It appears from Eqs. (11) and (12) that both "out- 
puts" C(S)(xs) and YS)(x) from the layer inside the 
region x~ ,<=x< xs  are linear functions of the "in- 
puts CU~(xj ,) and JU)(x~ ,) to the same layer, viz. 

CU)(x) = A u) C(;)(x; ~) + B(~)Y(~)(xs- 1) (15) 

and 

J(/)(x) = E u) C~ s_ ~) + f (s) YU)(xj 1) (16) 

where 

[ ~z (j) 1 
A u) = exp {~)A o)} [cosh fi(J' + ~(~ sinh fi(J)J 

B(j) _ exp {g(J) A (j)} sinh flu) 
D~ q O) (17) 

E ~ = D a) (~0))2 _ (qO))z exp {c~ u) A u)} sinh rio) 
qO) 

O) O) (s) O) 1 {ofl)A(j)}[c . s i n h f i . _ q . c o s h  f t . ] .  F ~) = - q~. exp 

It will be convenient to write Eqs. (15) and (16) in 
their matrix form as 

{ C,(J)(xj)'~ [A (j) B(J) 1 ~C.(J)(Xj_l) ~ (18) 
f j ) ( x ) j =  [EU) FU)J "[YU)(x;_~)J" 

Thus, the layer in the region xs_a < x < x s  can be 
described by a characteristic square matrix 

[A u) B o)] 
Qo) = [E (j) F(J)] ' (19) 

the transfer matrix, which connects the "input val- 
ues" C~ ~) and YU)(xj_ ~) at x = x s _  1 to the "out- 
put values" CU)(x)  and 3"U)(xj_ 1) from the layer at x 
=xs. But according to the fundamental continuity 
condition (III), the "input values" C~ and 
J{])(Xj_l) to the layer xj  I~X~Xj at  x = x s _  ~ are 
also the "output values" C ~ ~) and 
Y(s-1)(x;_l) from the adjacent layer x j _ 2 < x < x  j 1 
at x=xs  ~, i.e., 

{ C ( J ) ( x j _ I ) ~ _ _ f C ( J - 1 ) ( X j _ I ) ~  

J ( J ) ( x j _  1)J  - - [ Y ( J - * ) ( X  j_  1)J" 

Thus, Eq. (18) can also be written as 

= 0 
fS)(x;) J " [Y(s- 1)(x;- 1)~" (20) 

If the argument leading to Eq. 08) had been 
applied to the region xi_2<=x<=xs_l ,  the following 
system of equations would have been obtained 

Inserting this into Eq. (20) above gives 

i,(x, (21) " ")(ju-- .%_2)j" 

Thus, the "input values" C~J-1)(xj 2) and 
Jci-1)(xj  2) a t , ,x=xj  2 are now connected to the 
"output values CU)(x)  and J~ at x = x )  by a 
transfer matrix which is the product of the two 
transfer matrices which are associated to the layers 
between xj 2 and xj 1 and between xj 1 and xj 
respectively. By extending this argument through the 
whole stratified system, i.e., across the region 
O<_x<_x =h,  it follows that the "output values" 
C(h) and J(h) to the one bathing solution at x = h  
corresponding to the "input values" C(O) and J(O) 
from the other solution at x = 0 are described by the 
expression 

- ~ (~(0)~  (22) { j l : l }  = (~(n) �9 ~ ( n -  1) . . . . .  ~(1)) " ~ j ( 0 )  j .  

The product of two square matrices of the second 
order is again a square matrix of the second order. 
Consequently, 

Q(n).Q(n 1) . . . . .  Q(1)= [A(s) B(s)] (23) 
kE(s) F(s)J 
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where each of the elements A(s), B(s), E(s) and F(s) 
are complicated functions of the transform parame- 
ter s. Equation (22) can therefore be written in the 
more compact form 

C(h)'~ [A(s) B(s)] ~C(O)~ (24) 
J ( h ) ) =  LE(s) F(s)J " (J (0) ]  

which is equivalent to the following system of equa- 
tions 

C(h) = A (s) ~(0) + B (s) J (O)~ 
](h) = E(s) C(O) + F(s) J(O)J 

(25) 

which shows that the Laplace transforms of the 
"output values" C(h) and J(h) from the stratified 
object at x = h  both are linear functions of the "in- 
put values" 2(0) and J(0) to the experimental sys- 
tem at x=0.  However, it would be equally natural 
to regard the values C(h) and J(h) as the input to 
the system and those of C(0) and J(0) as output. 
This relation can be obtained from Eq. (25) accord- 
ing to the rules of matrix algebra (see, e.g., Head- 
ing, 1958) as 

{ C(O)'~_ 1 [ F(s) -B(s)] .~_C(h)~ (26) 
~ ' (0)J-detQ L-E(s) A(s)J ( J (h ) J  

where the quantity det Q = A (s) F(s) - B (s) E (s) is the 
determinant of the matrix 

Q=Q(,).Q(,,_I) . . . . .  Q(1) 

corresponding to Eq. (23). Since the determinant of 
the product of two square matrices equals the pro- 
duct of the determinants of the two matrices (see, 
e.g., Heading, 1958) it follows that 

detQ=detQ(n).detQ("-l)...detQ(a).., detQ (1). (27) 

It is shown in appendix B that 

det Q(J)= exp {2 ~(J) A (j)} (28) 

where ~.(J> and A (j> are defined by Eqs. (7) and (13), 
respectively. In view of the complicated elements 
A (j), B (j), E (j) and F (j) which constitute the matrix of 
QU) [cf Eq. (17)], the appearance of this simple 
result is in itself surprising. But the more important 
property of Eq. (28) is that none of the determinants 
of the transfer matrices Q(J) contain the Laplace 
transform parameter s. Insertion of Eq. (28) into Eq. 
(27) gives 

det Q = exp {2 ~ c~ (j) Au) } .  

{ jC--IOI} = ex p { - 2  ~ ~U)A(')}' L -  E ( s ) r  F ( s ) -  A(s)jB(s)] .~'(j(h)]C_(h)'~ 
which again is equivalent to the system of equations 

exp {2~ cdJ)A u~} C(0) =F(s) C(h)-B(s)J(h) 
{2 ~(J)A(J)} (29) exp ~ J (0)=-E(s)  C(h)+A(s)J(h). 

In addition to demonstrating the linear dependence 
between the input and output concentrations and 
fluxes, this system of equations taken together with 
the system of Eq. (25) provides a convenient means 
of calculating the time-dependent unidirectional flux- 
es through the stratified object. 

2. Unidirectional Fluxes 

The unidirectional flux was defined by Ussing (1948, 
1978) as the flux of the substance in question when 
its concentration is alyways maintained at zero in 
one of the phases surrounding the membrane. In 
general, we have the option of measuring either the 
value of the input flux of the isotope to the experi- 
mental object or the output flux from it. When the 
flux is stationary and the substance is conserved 
during its transport across the membrane the input 
flux equals the output flux. In the nonsteady state, 
however, where the concentration profile is being 
built up towards the stationary value the input flux 
will exceed the output flux. Furthermore, if the val- 
ues of the transport parameters vary across an 
asymmetric stratified object, the input fluxes at ei- 
ther membrane surface may have a different time 
dependence according to which of the two sides of 
the object is being loaded with the isotope during 
the unidirectional transport. In flux ratio consid- 
erations we are only interested in keeping an account 
of those particles which in one way or the other 
have permeated the whole system in question. Ac- 
cordingly, as time-dependent unidirectional fluxes we 
shall consider the flux of the radioactive tracer ions 
at the plane where the tracer ions leave the biologi- 
cal object and enter the surrounding medium having 
virtually zero concentration for the tracer ion in 
question. 

We begin by considering the unidirectional flux 
in the direction (0)~(h), i.e., the flux J(h) at the 
position x=h, when C(h)=0. Using the upper equa- 
tion of Eq. (29) and putting C(h) = 0 gives 

J(h) = - exp {2 ~ c4/) A (J)} C(0) 

Accordingly, Eq. (26) can be written as If the concentration C(0) is kept constant we have 
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C(0)= C(O)/s since the Laplace transform of unity 
equals 1/s, and the above expression can be written 

1 
if(h) = - exp {2 V c~O) A (j)} - - .  C(0). (30) 

sB(s) 

But C(0) is a constant and ~ ( J ) A  (j) does not con- 
tain the Laplace transform parameter s. Thus, the 
time-dependent part G(t) of the unidirectional flux 
J(h, t) is contained in the complex inversion integral 

), + i o o  

_ z B ( z ~  dz 

which in general can be transformed into a closed 
contour integral - the Bromwich integral - and 
evaluated making use of the calculus of residues (see, 
e.g., Sneddon, 1972). The time-dependent unidirec- 
tional flux J(~ in the direction (0)--(h) at the 
position x = h can thus be written 

J(~ = - C(0) exp {2~, ~(J)A (j)} G(t). (31) 

j(Oh) is directed along the positive direction of the x- 
axis and is therefore always positive. This implies 
that G(t) must be a negative quantity, i.e., -G(t)  
= IG(t)]. 

Next we consider the unidirectional flux in the 
opposite direction, (h)-+ (0), i.e., the flux 7(0) at the 
position x = 0  when C(0)=0. Invoking this condition 
in the upper equation of Eq. (25) gives 

C(h) C(h) (32) 
sB(s) 

if the concentration at x = h has the constant value 
C(h). Comparison between Eqs. (32) and (39) shows 
that, apart from the appearance of different con- 
tants, the two transforms are identical. Hence the 
inversion of Eq. (32) can be written as 

J(O, t) = C(h) G(t) 

from which it follows that the time-dependent uni- 
directional flux in the direction (h) --, (0) is 

j(h0)(t) = C(h)IG(t)l (33) 

bearing in mind that G(t) is negative and that uni- 
directional fluxes always are considered as positive 
quantities. Division of Eq. (33) into Eq. (31) gives 

J(Oh>(t) C(O) A(j> } 
j(hO)(t)- C(h) exp {2 ~ c~ (j) (34) 

since G(t)=-IG(t)[.  Substituting Eq. (7) into the 
above expression, we obtain the following expression 
for the time dependent flux ratio equation 

j(hO)(t)J(Oh)(t) C(h)C(O) ,I v(J) ) - exp ~ ~TyA(J)). (35) 

The right-hand side does not contain the time t. Thus 
the ratio between the two time-dependent unidirec- 
tional fluxes (i.e., output fluxes) is time invariant 
even in a stratified medium where the transport 
parameter v (J) and D (j) may vary from one layer to 
the next. 

The input component of the unidirectional fluxes 
are ](0) for C(h)=0 and J(h) for C(0)=0. Applying 
these boundary conditions to Eqs. (25) and (29) gives 

Y(0) X(s) c(0) 
J(h) F(s) C(h) 

which shows that the ratio between the time-de- 
pendent input fluxes is not time invariant unless A(s) 
=F(s), which in general is not the case. 

3. Flux Ratio for ElectrodiJyhsion and Convection 
The exponential term in Eq. (35) bears little re- 
semblance to those usually appearing in flux ratio 
equations. It will now be shown that Eq. (35) is 
identical with the expressions obtained by Ussing 
(1949, 1978), assuming stationary conditions. 

In general the migration velocity v (j) is given by 

V (j) = B ( J ) X  (j) (36) 

where B (j) is the mechanical mobility of the single 
isotope molecule in question in the region 
x j_ 1 <=x<xj, and X (j) is the driving force acting on 
each particle. X (j) may vary from one layer to the 
next but is assumed to have a constant value inside 
each layer xj l < X < X r  The mobility B (j) and the 
diffusion coefficient D (j) in each layer are interconnec- 
ted by Einstein's relation 

D (j) = k TB (j) (37) 

where k is Boltzmann's constant and T is the ab- 
solute temperature. Thus the exponent in Eq. (35) 
can be written as 

v (j) B(J) X (j) 1 
~ A ( J ) - V  A(J)- VX(J)A (j) 

But the sum of products X(J)A(J)=X(J)(xj--xj_I) r e -  

presents the work, W (~ which the driving force 
does on each isotope molecule in moving it through 
the stratified medium from the position x = 0  to x 
=h. Hence Eq. (35) can be written as 

J(~ C(O) 
d(h~ C(h) exp {W(~ (38) 
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which from the physical point of view perhaps is 
more easily understood than Eq. (35). 

If the isotope is an ion with charge number z 
and the electrical potential is 0(0) at x = 0  and ~,(h) 
at x=h, the work done against the electric field 
when moving the ion in question from x = 0 to x = h 
is 

z qe [0 (h) - ~ (0)] 

where qe is the elementary electronic charge. Since 
the particle is assumed to move with constant ve- 
locity, this work is numerically equal to and of 
opposite sign to the work, W (~ done by the electric 
field on the ion. That is to say W(~ 
-0(0)] .  Inserting this into Eq. (38) gives 

J(~ C(O) 
j(hO)(t)-- C(h) exp {Zqe [0 (0 ) -  r (39) 

or, since Faraday's number F=NAq e and the gas 
constant R = NAk, where N A is Avogadro's number, 

J(~ C(O) 
J(h~ C(h) exp {zF [0 (0 ) -  ~(h)]/RT}. (40) 

The right-hand side is identical to that obtained in 
the original treatment by Ussing (1949) where the 
system was considered to be in the stationary state 
only. 

The velocity v (j) in Eq. (35) could also result from 
a convection process where the solvent and the dis- 
solved particles move with the same speed through 
the stratified medium of thickness h. Alternatively, 
the velocity v (j) could be ascribed to an active trans- 
port being present in the j th layer. If both the con- 
vection velocity and the diffusion coefficient for the 
isotope in question assume the constant values v 
and D everywhere in the region O<x<_xh, Eq. (35) 
takes the particular simple form 

j(Oh)(t) C(O) 
J(h~ C(h) exp {hv/V}. (41) 

The right-hand side is identical to the expression 
obtained by Sten-Knudsen (1978), assuming that sta- 
tionary conditions hold. 

If the convection velocity is constant but the 
diffusion coefficients D (j~ vary from layer to layer, we 
have 

J(h~ C(h) exp ( ~ -  (42) 

where ( P )  is the average permeability defined by 

1/( P) = ~ 1/P o) = ~ 1/(DO~/A o)) 

(cf, e.g., Sten-Knudsen, 1978). 

If v (j) varies from layer to layer the condition of 
mass conservation must still prevail. This can be 
written as 

ve) S (~) = cb 

where ~ is the volume flow through the system, and 
S u) the area available for flow in the jth layer. If the 
diffusion coefficients D ~ all have the same value, D, 
Eq. (35) assumes the form 

J(~ C(O) ~dj) A(J)~ 
J(h~ -- C(h) exp [ g  ~, ~5-j" 

If the process of summation passes into one of in- 
tegration we have 

J(~ C(O) { ~ i  d x ~  
J(h~ C(h) exp Jo S(x)J (43) 

where the right-hand side is the expression obtained 
by Ussing (1952, 1978) and Koefoed-Johnsen and 
Ussing (1953), assuming stationary conditions to 
hold. 

Discussion 

1. The Time Invariance of the Flux Ratio 

The main result of the preceding analysis is the 
demonstration of the time invariance of the flux 
ratio equation. This result holds irrespective of 
whether the transport process considered takes place 
through a single barrier of homogeneous compo- 
sition or through a multilayered barrier consisting of 
sandwiched layers of homogeneous barriers in which 
the transport parameters for the particles in question 
vary from one layer to the next. This implies that 
the order in which the individual barriers are con- 
nected in cascade is immaterial for the time de- 
pendence of the flux of those particles which have 
passed the whole system. The transport processes 
considered were those which could be described 
within the framework of the Smoluchowski equa- 
tion. 

3C 02C 3C 
~ = D  dx~-~--v c~x 

which describes the motion of a collection of par- 
ticles whose random movements are being dislo- 
cated unidirectionally by some mechanism which 
imparts to each particle a constant drift velocity v. 
Since the values of both the diffusion coefficient D 
and the drift velocity v inside each layer are as- 
sumed to be constant, the Smoluchowski equation is 
a linear partial differential equation of the second 
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order. It is this property of linearity and not the 
particular from of the Smoluchowski equation which 
results in the linear interrelationship between the 
"input values" of concentration, C(J)(xj_ 1), and flux, 
J_(J)(xj_l), and the "output values" C(J)(xj) and 
J(J)(xj), viz. 

{ c_(J)(xj)~ [A'J)(s) u(J)(s)] ~ ~(J'(xj_ 1)'~ 

J(J)(xj)J = F(J)(s)J "[J(J)%_ OJ' 

This result is analogous to that which is obtained in 
an electrical four-terminal network where the poten- 
tial and current at the input side are linear functions 
of the potential and currents at the output side. In 
the four-terminal network the value of the deter- 
minant of the transfer matrix is unity. This can be 
shown to be a consequence of the reciprocity relation 
which holds for any linear electrical network and 
which follows from the more general reciprocal 
theorem for conductors (Green, 1828). A reciprocity 
relation similar to that of the four-terminal network 
will hold in a homogeneous slab for any transport 
process provided only linear operators in space and 
time are involved. As a result, the determinant of 
the transfer matrix in the above equation will always 
turn out to be a pure number, not containing the 
transform parameter s, although its value in general 
will differ from unity (cf Eq. (27), except when the 
transport of the particles results solely from a dif- 
fusion process. In the case of a cascade connection 
of several homogeneous slabs, the over-all transfer 
matrix of the whole system is the matrix product of 
the matrices of the individual slabs taken in the 
order of connection. Since the determinant of the 
product of any number of square matrices is equal 
to the product of the determinants of those matrices, 
it follows that the determinant of the over-all matrix 
also is a pure number. This property, which also is a 
consequence oflinearity prevailing throughout the sys- 
tem, results in two unidirectional fluxes, both having 
the same time dependence although they may not 
approach the same final stationary value. 

It was essential for our demonstration of the 
time invariance of the flux ratio equation that the 
following parameters were constant during the time 
considered: (i) The concentrations C(0) and C(h) of 
the substance in question in the two surrounding 
solutions, and (ii) the diffusion constant D and the 
drift velocity v for the particles in each of the cas- 
caded layers. The first condition can be readily as- 
sumed but the second cannot. For example, a de- 
terioration of the preparation would gradually cause 
a change in the resistance and potential profiles 
through the preparation and thus in the value of the 
flux ratio. But even with a stable nondeteriorating 

preparation the values of D and v may change dur- 
ing the experiment because they both may depend 
upon the concentration profile. In that case the con- 
dition for establishing the flux ratio equation would 
require that both the concentration profile for all 
the permeating substances and the potential profile 
remained stationary throughout the preparation dur- 
ing the entire duration of the experiment. In general, 
this requirement can only be fulfilled by measuring 
isotope fluxes alone provided the isotope is used in 
such a small concentration that the progress of the 
tracer concentration profile through the preparation 
towards its stationary state does not perturb the 
existing stationary concentration profile for the cor- 
responding nonradioactive substance. 

The procedure of considering a large number of 
slabs of variable thickness A (i) arranged in cascade 
led to an alternative formula for the flux ratio equa- 
tion, where the weight factor to the concentration 
ratio C(O)/C(h), which at the first glance might ap- 
pear somewhat strange, is an exponential of the 
following form 

exp { Z v (.i) A(J)/D(J)}. 

Nevertheless, this form of the exponential seems to 
be the more general. This is so because a great 
number of transport processes in biology can be 
described within the framework of the Smol- 
uchowski equation by assigning a partial drift ve- 
locity, v v, which is characteristic for each particular 
process. Thus, if the drift velocity is caused by an 
electric field acting on ionic tracers, the above ex- 
pression was easily transformed into Eq. (40) which 
is the well known expression of Ussing (1949), which 
allows for a precise numerical evaluation of the flux 
ratio under a process of pure electrodiffusion. Simi- 
larly, if a convective flow causes a solvent drag on 
the particles, Eq. (35) will lead to the various ex- 
pressions for the flux ratio which depending upon the 
geometry of the flow, have been derived assuming 
steady-state conditions to hold (Ussing, 1952; Koefoed- 
Johnsen & Ussing, 1953; Meares & Ussing, 1959a, b; 
Hoshiko & Lindley, 1964; Kedem & Essig, 1965; 
Ussing, 1978). Analogously, if the particles are sub- 
ject to exchange diffusion, to co-transport with an- 
other molecular species, or even to an active transport, 
a component to the drift velocity can be assigned to 
each type of transport. Thus, the exponential in the 
flux ratio equation appropriate to these processes 
will again be given by Eq. (35), although it may be 
impossible in these cases to evaluate with precision 
the numerical value of the exponential. Nevertheless, 
even in these cases the two oppositely directed uni- 
directional tracer fluxes have the same time de- 
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pendence, i.e., the steady-state value of the flux ratio 
can be estimated from the nonsteady-state value. 

2. Experimental Application of the Principle 
of Constant Flux Ratio 

From the foregoing it is clear that deviations from 
the rule of time-invariant flux ratio can occur only if 
one or more of our original assumptions are not 
fulfilled. We shall briefly discuss two such cases 
which are directly applicable to biological studies. 

In the first place, the substance in question may 
pass the experimental object by more than one path- 
way. Granted that the pathways are characterized by 
different flux ratios as well as different mean passage 
times, the flux ratio observed for the whole object 
may change with time. To illustrate this point, let us 
assume that sodium can pass an epithelium by a 
slow cellular route where it undergoes active trans- 
port and a fast intercellular shunt path where the 
transport is strictly passive. Under these conditions 
it may well be that immediately after addition of the 
tracers to the bathing solution the flux ratio will be 
close to that of passive transport, whereas that of 
active transport will dominate later on. In fact, a 
recent study has shown this to be the case. Under 
the assumption that there are only two significant 
pathways with different flux ratios and different 
mean passage times, it is possible to resolve the 
experimental data into two sets of fluxes, each be- 
longing to one of the two pathways (Ussing, Eskesen 
& Lim, 1981). 

The second application of the principle of con- 
stant flux ratios is concerned with obtaining reliable 
flux ratios in experiments where the steady flux ratio 
cannot be obtained either because of a limited via- 
bility for the biological specimen or because the 
experimental conditions themselves lead to changes 
in the flux ratio before the stationary state has been 
reached. If only one pathway is involved one can 
usually obtain the correct flux ratio by extrapolating 
the sequentially measured flux ratios back to zero 
time. The rationale for this procedure is that a cor- 
rect measurement of the flux ratio only requires that 
the properties of the specimen have not changed 
measurably within the period required for the tracer 
experiment. Now, the time it takes for the first ap- 
pearance of the tracer passing the specimen can be 
reduced almost at will by an increase in the specific 
activity. Thus, formally at least, one can reduce the 
duration of the experiment until the specimen has 
not changed measurably during the passage of the 
tracer. The extrapolated zero-time flux ratio is thus 
the best possible estimate of the steady-state value. 
For  multiple pathways each one must be considered 

separately, but for more than two pathways the 
method is hardly warranted. 

Finally, a word about experimental procedure: 
Ideally one should use two tracers for the same 
substance added simultaneously on the two sides. 
Alternatively, one can measure two fluxes sequen- 
tially on the same specimen or in parallel on two 
specimens. In the latter case it is mandatory that all 
measurable physical properties should be as similar as 
possible during the corresponding measurement of 
forward and backward flux. 

The authors are very grateful to Dr. Leon Pape for critical 
examination of the text and helpful suggestions. We also wish to 
acknowledge our indebtedness to Mrs. Julia Ann Halkier for 
devoting her skill and patience to the preparation of a difficult 
manuscript. 

Appendix A 
The Evaluation of the Transforms C(x , s )  and J(x,s) 
Suitable for the Interval x j_  i < x < x j ,  

when Both Transforms Must Conform 
to Boundary Conditions for x = xj_ l 

We begin by adjusting the parameter ~ in the function 

so that the function satisfies the Laplace transform of the Smol- 
uchowski equation 

d2C 
=2~(J)o,C-(S/DO)) C = 0  (A1) 

dx 2 OX 

where 2o:(~)=vU)/D ~). Inserting C = e x p  {r into the above equa- 
tion gives the following quadratic in ~ 

~2- 2~O) ~ -  s/D(J)=O 

the roots of which are 

A solution of Eq. (A1) will therefore be of the form 

C(x, s)= A exp {~)x} exp {q~i)x} +B exp {~(J)x} exp { -q(~)x} 

where A and B are arbitrary constants. By putting A/2=B/2 and 
A/2=-B/2 ,  respectively, we obtain 

C - A  exp {~(Jlx} coshqe)x+B exp {~(J)} sinh q(J)x (A2) 

which is another general form of the solution. Since sinh0 
=0  and c o s h 0 = l  and, furthermore, C in the above equation 
must assume the value C(xj_~) for x=x j  ~, an appropriate form 
of Eq. (A2) to serve this end is 

C(x) = C(x~_ 1) exp {c~/)(x - x j  1)} cosh q(JI (x - x  j_ 1) 

+ B ~/) exp { c# ~ (x - x~ _ 1)} sinh q~)(x - xj _ 1) (A 3) 

which is Eq. (6) in the text. 
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Next, the constant B (j) is determined by using the second 
boundary condition to be satisfied, viz. that J must assume the 
value J(x~ i) for x=x j_  1. We invoke the transform for the flux 

d C  - 
J =  - DO) - -+  v(i) C 

dx 

and insert Eq. (A3). This gives the expression 

J(x) = D ~) exp {ez (j) (x - x~_ i)} 

�9 [~(J) cosh q~J)(x - xj_ 1) + q~J) sinh qti)(x - x j_ 1)] C(x~_ 1) 

+ D t/) exp {c~ ~l(x - x j_ 1)} 

�9 [c~ O) sinh q~J) (x - x j_ 1) - qO) coshqO) (x - x j_ 1)] B~J) 
(A4) 

from which the constant B (j) is determined by invoking the con- 
dition J =J(xj_ 1) for x =x~_ ~. The result is 

B ~  1 ) - ~ J ( x c i  1)) 

and inserting this value into Eqs. (A3) and (A4) gives, respec- 
tively, Eqs. (9) and (10) in the text. 

Appendix B 

Evaluation of the Determinant 
of the Transfer Matrix Q 

We have from Eq. (19) 

det Qo) = A O) F(J) _ B(J) E(J) 

In this expression we insert the values given by Eq. (17), dropping 
the superscripts in c~ (j), A ~ q(J), fl(J), thus 

- D Ee2/q - q~ e ~a- sinh ft. ( - 1) e ~A- sinh fi/Dq 

= - -  eZrA (~/q)2  sinh 2 fi + eZrA cosh z ]~ 

+ e 2~ (c~/q) 2 sinh ~- fl - e 2~a sinh2 fi 

= e  2*a (cosh 2 f l -  sinh 2 fi) = exp {2~ <j) At/)}. 
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